## HIGH RESISTANCE MEASUREMENT AT NIM

Shao Haiming, Liang Bo, Dai Kenan, Wang Hao, Wu Hao National Institute of Metrology

No. 18 Bei San Huan Dong Lu, Beijing, 100013. China

## <u>Abstract</u>

An automatic ratio bridge based on BVD is used to take measurement up to  $1G\Omega$  at NIM. Adopting a "Virtual Null" mode efficiently reduces effects of insulation of bridge and offset current of detector. The measurement of a  $100M\Omega$  Hamon resistor shows an agreement of 1 parts in  $10^6$  at ratio  $1G\Omega$ : $100M\Omega$ .

### **Introduction**

Standard resistors from  $100k\Omega$  to  $1G\Omega$  are manually calibrated at NIM on a guarded Wheatstone bridge fabricated by NIM-self. It is noise sensitive and time exhaustive, so higher uncertainty. Automatic Ratio Bridge [1] based on a 13-bits Binary Voltage Divider (BVD [2]) from MI is commercially available. As the BVD have an full linearity of approximately 1 part in  $10^8$  after its self-calibration combining with a DVM, it is possible to measure the ratio of two resistance to within a few ppm in the range from  $10k\Omega$  to  $100M\Omega$ . The constraints that limit the bridge range to higher resistance are mainly insulation of bridge terminals and DVM's basis offset currents, etc. A procedure called "Virtual Null" reduces these effects and extends resistance measurement to  $1G \Omega$  within a few ppm uncertainty. An  $11 \times 100M \Omega$  Hamon resistor with equal-potential-guard is developed to verify that.

#### **Principle**

The circuit of automatic bridge based on BVD is shown in Fig.1.



Fig. 1 Automatic Ratio Bridge Based on BVD

After the four measurements  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$  are down, the ratio of  $R_X$  and  $R_S$  is given by

$$R = \frac{R_x}{R_s} = \frac{V_1 - V_2}{V_3 - V_4} = \frac{V_1 / E - V_2 / E}{V_3 / E - V_4 / E} = \frac{r_1 - r_2}{r_3 - r_4}$$

Here,  $r_i = V_i / E = k_i + v_i / E$ .  $k_i$  represents the settings of BVD at V<sub>i</sub>,  $v_i$  the DVM's reading. The error of  $r_i$  is

$$\partial r_i = \partial k_i + \frac{\partial v_i}{E} + \frac{v_i}{E} \cdot \frac{\partial E}{E} \approx \partial k_i + \frac{\partial v_i}{E}$$

In case of  $100M \Omega$  and above, the leakage resistor  $R_L$  between terminals V<sub>2</sub>, V<sub>3</sub> or cable's insulation and ground will considerably shunt  $R_S$  to limit the lowest uncertainty. The offset current of DVM, typically a few pA, which flow through the higher equivalent output resistance of bridge also superposes a few microvolts on DVM readings.

These defects are greatly improved by following "Virtual Null" measurement mode. That is doing two measurements for either of  $V_2$  and  $V_3$ . Firstly switch S to 1 in Fig. 1, then to 2 with all other settings unvaried. The difference of DVM's two readings removes greatly effects of insulation and offset current.

## 1. Insulation Effect of Terminals V2 and V3

Concerning S=1,  $V_{+}^{l}$ , which means the high side's potential of DVM or one of V<sub>2</sub> and V<sub>3</sub> in Fig.2, and  $V_{-}^{l}$ , the low side's potential of DVM or BVD's output, can be expressed as followings



Fig. 2a Equivalent circuit of S to position 1

Fig. 2b Equivalent circuit of S to position 2

Here  $R_L$  indicates the leakage resistance from terminal  $v_2$  to bridge ground. E' referring output voltage of active guard proximately equals  $V_+^{\ l}$ , viz.  $E' = \frac{R_S}{R_S + R_X} E(1 + \alpha) \approx V_+^l$ .

For S = 2,

$$V_{+}^{2} = \frac{R_{L}}{R_{L} + R_{S} / / R_{X}} E' \approx \left(1 - \frac{R_{S}R_{X}}{R_{L}(R_{S} + R_{X})}\right) E'$$
$$V_{-}^{2} = E'$$

The difference of DVM's two readings,  $D_{DVM}$ , could be  $D_{DVM} = \left( V_+^1 - V_-^1 \right) \cdot \left( V_+^2 - V_-^2 \right)$ 

 $= \left(\frac{R_S}{R_S + R_X}E - V_-^1\right) + \frac{R_S}{R_S + R_X} \left(-\frac{R_S}{R_S + R_X} \cdot \frac{R_X}{R_L}E + \frac{R_X}{R_L}E'\right)$ Considering,  $E' = \frac{R_S}{R_S + R_X}E(1 + \alpha)$ 

$$D_{DVM} = \left(\frac{R_S}{R_S + R_X}E - V_-^1\right) + \frac{R_X}{R_L} \cdot \frac{R_S^2}{(R_S + R_X)^2}E\alpha$$

The relative error induced by  $R_L$ 

$$\frac{R_S}{R_L} \cdot \frac{R_X}{R_S + R_X} \alpha < \frac{R_S}{R_L} \alpha$$

Generally,  $\alpha < 10^{-3}$ . For  $Rx:Rs=1G\Omega:100M\Omega$  and  $R_L \ge 10^{12}\Omega$ , the error induced by  $R_L$  would be less than  $10^{-7}$ .

# 2. Effect of DVM's performance, as Input Resistance $R_{i,s}$ offset current $I_o$ and offset voltage $e_0$

An equivalent circuit of a DVM is shown as in Fig. 3a. Leakage resistance  $R_H$ ,  $R_L$  and bias current  $I_0$  shunt an ideal voltmeter in series with the offset  $e_0$ . It is simplified as Fig. 3b if G is guarded with V.



Fig. 3a Equivalent circuit of DVM

Fig. 3b Equivalent circuit of DVM with G guarded by V.

In case of S =1 and S =2, Equivalent circuits of bridge are shown in Fig. 4a and Fig. 4b respectively.



Fig. 4 Equivalent circuits of bridge with S=1 and S=2.  $R_o$  and e refer the output resistance and voltage of bridge.

From Fig. 4, the readings of ideal voltmeter,  $V_1$  and  $V_2$ ,

should be

$$V_{1} = e_{0} + (R_{o} / / R_{i})I_{0} + \frac{R_{i}}{R_{i} + R_{o}}e$$

$$V_{2} = e_{0} + (R_{o} / / R_{i})I_{0}$$

$$V_{1} - V_{2} = \frac{R_{i}}{R_{i} + R_{o}}e \approx (1 - \frac{R_{o}}{R_{i}})e$$

It is clear that offset voltage and current,  $e_0$  and  $I_0$ , have no effect on the difference of DVM's two readings if they are unvaried. Input resistance will result in an error to E' as

$$\frac{R_o}{R_i} \cdot \frac{e}{E}$$

Normally e/E' is less than  $1 \times 10^{-3}$ .  $R_X : R_S = 1G \Omega : 100M$  $\Omega, R_i \ge 100G \Omega$  results in error  $1 \times 10^{-6}$ .

## **Experiments**

For verifying the ratio uncertainty of bridge in "Virtual Null" mode, a  $100M \Omega$  Hamon wirewound resistor, with auxiliary equal-potential-guard is fabricated and calibrated by this way.

| $R_x(\Omega)$  | $R_s(\Omega)$        | $R_x$ : $R_s$ |
|----------------|----------------------|---------------|
| $R_2$          | $R_{I} = 10 M$       | 10.000747     |
| =100M          |                      |               |
| $R_{HP}$       | $R_{I} = 10 M$       | 1.0000601     |
| =10M           |                      |               |
| $R_{HS} = 1$ G | $R_2 = 100 \text{M}$ | 9.999846      |
|                |                      |               |

The results,  $R_{HS}$ :  $R_{HP} = 100(1 - 0.8 \times 10^{-6})$ , give an agreement of 1 parts in  $10^6$  with  $100M \Omega$  Hamon Resistor at the ratio of  $1G \Omega$ : $100M \Omega$ .

## **Conclusions**

An "Virtual Null" mode is adopted on MI Automatic Ratio Bridge. The uncertainty is improved at ratio 1G  $\Omega$  :100M  $\Omega$ . This is principally suitable for the resistance calibration above 1G  $\Omega$ .

## **Reference**

 [1] A.F.Dunn, "Measurement of Resistance Ratios in the Range to 100 Megohms." *IEEE Trans. Instrum. Meas.*, vol. 40, No.2, pp278-280, 1991.

[2] R. D. Cutkosky, "A New Switching Technique for Binary Resistive Dividers." *IEEE Trans. Instrum. Meas.*, vol. IM-27, No.4, pp421-422, 1978.

[3] S. H. Tsao, "An Accurate, Automatic 10-V Measurement System." *IEEE Trans. Instrum. Meas.*, vol. 38, pp321-323, 1989.